
A Quantitative Evaluation of

Dissemination-Time Preservation Metadata

Joan A. Smith and Michael L. Nelson

Old Dominion University, C.S. Dept, Norfolk VA 23529

Abstract. One of many challenges facing web preservation efforts is the
lack of metadata available for web resources. In prior work, we proposed
a model that takes advantage of a site’s own web server to prepare its
resources for preservation. When responding to a request from an archiv-
ing repository, the server applies a series of metadata utilities, such as
Jhove and Exif, to the requested resource. The output from each utility
is included in the HTTP response along with the resource itself. This
paper addresses the question of feasibility: Is it in fact practical to use
the site’s web server as a just-in-time metadata generator, or does the
extra processing create an unacceptable deterioration in server respon-
siveness to quotidian events? Our tests indicate that (a) this approach
can work effectively for both the crawler and the server; and that (b)
utility selection is an important factor in overall performance.

1 Background

There are many on-going efforts aimed at web preservation. One problem shared
by these efforts is the dearth of metadata available directly from websites them-
selves. For preservation, we need much more metadata than is customarily avail-
able from an HTTP request-response event. A common approach to this problem
is to crawl the site then have the archivist store the resources for later analysis
and repository ingestion. However, we believe that the best time to analyze a file
is at the time of the request, when the server itself is more likely to be able to
provide preservation-related information. We also believe that automated meta-
data utilities installed at the originating web server can contribute meaningfully
to web preservation.

We demonstrated this as a proof-of-concept in prior work, [1, 2] but the
question remained whether it is practical to use the site’s web server as a just-
in-time metadata generator. Does performance suffer an unacceptable deterio-
ration? Can an archival request be serviced simultaneously with quotidian web
requests? To investigate the feasibility of this approach, we constructed a “typi-
cal” website for testing based on an analysis of published web site characteristics.
We then subjected this test website to varying request (load) levels and harvested
the contents to determine the performance impact of creating preservation meta-
data at dissemination time, i.e., at the time of the request. We found that for
all metadata utilities but one, we could process the results without a significant
impact on server performance overall. Our tests indicate that (a) this approach



can work effectively for both the crawler and the server; and that (b) utilities
selection is an important factor in overall performance.

2 Related Work

2.1 Characterizing A Typical Website

Typical Website Content. Since the website would be passed through the
rigors of various metadata utilities, we wanted our test web to mimic a “typical”
website in terms of content and structure. But what, exactly, is a typical website
and what does a typical web page contain? An extensive survey of web content
was published by Berkeley in 2003 [3]. At that point, surface web composition
was roughly 23.2% images, 17.8% HTML, and 13% PHP, with the rest a col-
lection of other formats ranging from PDFs to animations. More recent studies
support this rough proportion, noting that most web pages have one or more im-
ages embedded in them thus contributing to a higher ratio of images to HTML
resources but still supporting the intuitive impression that the web is largely
HTML [4, 5, 6].

With regard to website size and content, a 2004 report on the composition
of various national domains [4] showed a wide range of average number of pages
per site, with a low of 52 (Spain) to a high of 549 (Indochina). That same study
also indicated a preponderance of HTML over other document types, with PDF
and plain text files accounting for up to 85% of the remainder (these figures do
not include image files). Various studies on web content and configuration [5, 6]
found that most HTML documents contain less than 300 words, with a per-page
average of 281 HTML tags and a 221x221 pixel image (usually GIF or JPEG)
that acted as a document header, much like the banner name of a newspaper.
A 2004 examination of e-commerce sites at a large server farm [7] found an
average object size of 9 KB and a much higher percentage of image use than seen
in other studies, which the authors attribute to the nature of e-commerce sites.
Other researchers [8, 9] have noted an increasing use of dynamic presentation
technologies like Javascript, PHP, and Active Server pages.

Despite the many web studies available, no clear characterization of a “typi-
cal” website emerges, except perhaps at the extremes: single-page sites (often at
“spam farms”) and infinite sites, which use dynamic-generation to create infinite
pages such as a meeting-schedule site with a limitless value for future date. We
are therefore left to “guesstimate” the composition of a small departmental or
community website in terms of size and types of resources. The general tendency
seems to be a small website of a few hundred files, with the HTML pages roughly
5 to 25 KB in size; having approximately 3 or more images embedded per HTML
page; containing links to various internal resources distributed throughout the
site, and a variety of external links on selected pages.

Typical Website Traffic Patterns. Many studies have been done on web
traffic patterns, including some at large commercial sites [7, 9]. Data from these



studies enable researchers to model request patterns realistically when simulating
traffic at a test website. Key findings applicable to this project are the rate and
distribution of requests, which show a Pareto-type distribution, i.e., the majority
of the requests (80% to 90%) typically cover only 10% to 20% of the site’s total
resources. This aspect of web traffic has made it possible for webmasters to fine-
tune their web server configurations. As a result, the server will typically have
the majority of incoming requests already available in cache, improving overall
response time. Other website traffic studies [6, 10] have focused on analyzing and
improving search-engine-crawler efficiency. Because crawlers access all of a site’s
resources, server performance can suffer as it swaps seldom-used pages in and
out of memory to satisfy the robot’s requests (a locality of reference problem).

2.2 Resource Harvesting With OAI-PMH

The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH)
was developed to facilitate interoperability among repositories. Most digital li-
brarians know this protocol as a means to obtain information about objects in
a repository, such as Dublin Core or MARC metadata. However, OAI-PMH can
also be used to harvest the resources themselves, not just their metadata. [11] An
Apache web server implementation of OAI-PMH (“mod oai”) brought the rich
functionality of the protocol to the web server. [1] It overcomes inherent HTTP
limitations by allowing, for example, date-range requests (“give me everything
new since March 13, 2008”) or MIME type requests (“give me all of the JPEG
resources you have”). Here’s an example of a request to a mod oai-enabled web
server that covers both of these criteria:
http://www.foo.edu/modoai?verb=ListRecords&From=2008-03-13
&set=mime:image:jpeg&metadataPrefix=oai didl.

With OAI-PMH, web harvesting becomes much more efficient while still op-
erating within the HTTP protocol. Instead of having to conduct the traditional
link-by-link crawl of a site, a single OAI-PMH ListIdentifiers request can produce
a full sitemap. OAI-PMH can also produce complex-object format responses. For
example, the ListRecords request can return every resource, together with a set
of minimal metadata, in MPEG-21 DIDL format. [12] Each resource - an image,
PDF, text file, etc. - is encoded in Base64 and encapsulated with its metadata
in the response. The MPEG-21 DIDL output contains plain ASCII in an XML-
format; an abbreviated example is shown in Figure 1.

OAI-PMH and the MPEG-21 DIDL format are quite flexible: a response could
contain more information, if it were available from the server. Experimenting
with this concept, we expanded mod oai to accept plugins, third-party metadata
utilities which analyze the resource as it is being requested. citejas:iwaw07 The
final response contains the resource (as Base64), the minimal metadata and
the additional, expanded information from the metadata utilities, all packaged
together in an MPEG-21 DIDL. We call this new aggregation of resource +
metadata a “CRATE” and used mod oai in an experimental CRATE prototype
to demonstrate that it can be done. [1, 2] . In the CRATE approach, metadata
plugins are implemented on a per-resource basis depending on file type. They



<crateplugin>
<crateplugin:name>file</crateplugin:name>
<crateplugin:version>
<![CDATA[1.0.5]]>
</crateplugin:version>
<crateplugin:content>
<![CDATA[
/var/www/testWeb/group8/pdf120.pdf:
PDF document, version 1.3]]>
</crateplugin:content>
</crateplugin>
<crateplugin>
<crateplugin:name> md5sum </crateplugin:name>

<crateplugin:version>
<![CDATA[md5sum (GNU coreutils) 5.93
Copyright (C) 2005 Free Software
Foundation, Inc. This is free software.
You may redistribute copies of it under
the terms of the GNU General Public License
<http://www.gnu.org/licenses/gpl.html>.
There is NO WARRANTY, to the extent permitted
by law. Written by Ulrich Drepper and
Scott Miller.]]> </crateplugin:version>
<crateplugin:content>
<![CDATA[e1f66cd707c2df36dafe8557d82536a1]]>
</crateplugin:content>
</crateplugin>

Fig. 1. Partial OAI-PMH response (CRATE) shown in MPEG-21 DIDL format

can be applied to a certain set of files (only images; only HTML; only plain
text; etc.), or to every resource (“*/*”), or to some specific combination of
selected resources. Our proof-of-concept incorporated a variety of utilities on
the web server to process each resource just as it is being disseminated (sent
over HTTP). That is, when a web resource is requested (“GET x.html”), the
web server calls the various utilities, gathers the output, then responds to the
GET request by providing the aggregated utility data and the resource together
in the response. An example of the output can be seen in Figure 1. Showing that
it can be done does not say anything about feasibility. This paper takes a first
look at the issues of feasibility and practicality from the quantitative perspective
of web server performance.

3 Experiment Design

The goal of our experiment was to answer two key questions of concern to both
webmasters and archivists, i.e., (1) Is it safe to generate metadata directly from
the web server? (2) Is it safe to ask for such metadata? To answer the first ques-
tion, we created a set of tests to see if a web server could reasonably provide
CRATE-type responses (resource + metadata) without producing an unaccept-
able deterioration in the server’s normal responsiveness to general users. To
answer the second question, we monitored metadata utility response time, and
the time and size of the output. Three components form the core of the experi-
ment: (1) A test website; (2) a variety of common metadata utilities, and (3) a
test environment (web traffic simulator).

For performing the tests, we used a commercial testing environment provided
by a local software firm which develops web applications. The web server and
“users” in the test environment are representative of mid-range web servers in-
stalled at the firm’s clients. Users are simulated using Apache’s JMeter v.2.3.1
software on a quad dual core AMD Opteron PC running Windows 2003 Server.
This configuration allows many thousands of users to be simulated simultane-
ously. The web server has two 2 GHz AMD Opteron processors, 2 GB RAM, 6



GB of swap space, and an Ultra-320 SCSI hard disk operating at 10,000 RPM.
Server operating system is Red Hat Enterprise Linux version 4 (Linux 2.6.9-
67.0.1 ELSMP), with Apache version 2.0.52 installed. Although the server is
capable of having up to 100 Apache threads, we left it in the default “10 thread”
configuration to represent a worst-case performance scenario.

3.1 Designing The Test Website

Research on the evolution of web page composition [5, 6] and on commercial
web server traffic [7] provided guidelines for site design and traffic expectations.
Average web page size in these studies ranged from 5 to 25KB (a figure which
includes the size of embedded images), with shopping sites often having a higher
size because of a large number of embedded images. We based our overall website
content on characteristics found in [3]and [5], allowing for a higher percentage of
PDF, .DOC, and .PPT files to better reflect the content of our hypothetical site,
where official forms and permits are likely to be in printable PDF and .DOC
formats, and course lectures are likely to be in PDF and .PPT formats.

HTML pages were built using a script we developed for other research projects.
Content was extracted from Project Gutenberg e-text files, and images came
from a variety of sources including Project Gutenberg and the authors’ personal
creations. The PDF files were created using a template which produced content
similar to the HTML pages; each PDF file ranged from 1-3 pages in length. A
collection of Word “DOC” files and Powerpoint “PPT” files were created using
Microsoft Office. These and the other files were randomly assigned to HTML
pages throughout the site. If the random resource was a PNG, JPEG or GIF
image, it was “embedded” in the page; otherwise, it was represented as a linked
resource. Each resource was unique in content, and the site layout was a rea-
sonable facsimile of a small, quotidian website. Table 1-(a) describes the overall
content of the site by file type and hierarchy, and Table 1-(b) shows the resource
distribution by type and size for the test website.

3.2 Metadata Utilities

Utility Selection Criteria. Our target environment is the small to mid-size
website where there is interest in preservation but no budget to support it in
terms of manpower or software investment. For example, a small-town citizen
information website, or a university department-level website with perhaps only
one professional webmaster and/or a group of students who act as webmaster
support. With this is mind, four elements were defined as the primary selec-
tion factors for the metadata utilities to be included in our test: (1) Cost, (2)
Operating System, (3) Invocation Method and (4) Ease of Installation.

Many, if not most, small departmental and community web servers operate
under an extremely constrained budget. Cost, therefore, had to be a factor in
selecting our test utilities. Each utility also had to be installable under our Linux
OS but ideally under any Unix-like operating system (Sun OS, OS-X, etc.) where
mod oai might be installed. The utilities all provide a command-line invocation



Table 1. Resource organization and distribution on the test website. Each “Grp”
directory has 4 directories below it, which contain the bulk of the website content.
†Resources were randomly chosen from the list. ‡Other file types include SVG,
MP3, WMV, and ASCII text.

(a) Organization

File Grp Dir Site
Type 1-12 1-4 Count

“Home” n/a n/a 1 HTML
n/a n/a 3 GIF

HTML 1 10 492 HTML
Image ≥ 3 ≥ 3 195 GIF

≤ 2† ≤ 1† 51 JPEG
≤ 2† ≤ 1† 51 PNG

App. ≥ 3† ≤ 1† 144 PDF
≤ 1† ≤ 1† 48 .DOC
≤ 1† ≤ 1† 50 .PPT

Other‡ ≤ 1† ≤ 1† 49 (Total)
Total Files: 1084

(b) Distribution

Ext Site Avg.Bytes
(MIME) Count per File

mp3 11 124165
png 51 10016
pdf 144 232579
ppt 50 744652
txt 14 7488

wmv 11 58922
html 493 2511
jpeg 51 6052
doc 47 32789
svg 14 24374
gif 198 6043
Total Bytes: 77,979,284

method. This is necessary because mod oai issues the equivalent of a command-
line request to each utility. It also enables us to automate the process of passing
a single resource through each of the utilities via the Apache configuration file
Finally, ease-of-installation is important if we expect the average webmaster to
be responsible for installing and configuring such utilities. External dependencies
like software libraries should already be installed or should come packaged with
the utility and be automatically included in the installation process.

Utilities Considered for Inclusion. There are many utilities that offer at-
tractive analytical capabilities but which are not practical candidates. Some
(e.g., Oxford’s WordSmith tools [13]) are purely GUI-oriented, Windows-based
products. Others such as Essence ([14]) are closer to frameworks than to utilities
with complicated installation and configuration requirements. Another popular
utility we were not able to include is the keyphrase analyzer Kea ([15]), because
it has to be “trained” for each document collection with a set of candidate texts
and author-designated index terms. Still others, like Jhove and the MD5 hash
utility, are both practical candidates and produce useful preservation metadata.

There is some duplication of analysis among the utilities considered. Exif, a
utility for analyzing digital photo files, overlaps with Jhove’s JPEG HULs, for
example. Such duplication can be informative. Analysis results do not always
agree between any two utilities, and input from multiple sources may help the
archivist. For instance, the two sites: (a) http://www.library.kr.ua/cgi-bin/
lookatdce.cgi and (b) http://www.ukoln.ac.uk/cgi-bin/dcdot.pl use dif-



ferent methods to extract and assign Dublin Core from HTML pages, and so
their results often differ. Automated Dublin Core metadata extraction proved to
be a bigger problem than we had expected. The two Dublin Core analysis utili-
ties at the sites mentioned above are not designed for the automated, batch-style
processing required by mod oai. As a last resort, we wrote a short Perl script
which simply extracts the <META>tags from the <HEAD>section of HTML
documents. The result is not true Dublin Core, but the methodology is similar
to the approach taken by other, GUI-based Dublin Core tools.

Utilities Selected for the Experiment. Several utilities were clear candi-
dates for selection, easily meeting the criteria of (1)cost, (2)OS, and (3)batch
mode compatibility. A couple of utilities posed more installation issues than
we would like to see (criterion 4), but they offer useful metadata and were in-
cluded despite these difficulties. The eleven utilities used in the experiments were:
(1) Jhove; (2) Exif; (3) Word Count, “WC”; (4) Open Text Summarizer, “OTS”;
(5) File Magic, “file”; (6) Pronom-Droid, “droid”; (7) Metadata Extraction Tool,
“MetaX”; (8) dcTag (our home-grown utility), and three hash functions, SHA,
SHA-1, and MD-5. There is some duplication of analysis; both Jhove and Exif
are applied to JPEG resources, for example. The utilities represent a range of
implementations, from tools like File Magic (Linux “file” command) and the
hashes (MD5, SHA, SHA-1) which are installed by default with the operating
system; to open source products written in C (Open Text Summarizer) which
have to be compiled and installed on the target web server; to Perl-based scripts
(dcTag) and Java utilities (Jhove, Metadata Extractor, and Pronom-Droid).

3.3 Site Setup

Configuring The Web Server. Like other Apache modules, mod oai activ-
ity is controlled through the web server configuration file. A snippet from the
mod oai section is shown in Figure 2. Each modoai plugin line specifies a label
for the utility (ex: “md5sum”); the executable command path, with “%s” acting
as a placeholder for the website resource to be processed; the command path to
generate plugin version information (ex: “/usr/bin/md5sum -v”); and the range
of MIME types to be processed by the plugin. For example, “*/*” indicates all
resources are processed by that particular plugin, whereas “image/jpeg” indi-
cates that only JPEG images will be processed.

Simulating Web Traffic. An important question to ask when evaluating the
impact of metadata utilities is how it affects performance under normal server
load, i.e., the traffic volume typically expected at the website. We configured our
test server for the maximum possible traffic it would support which ranged from
88-93 requests per second. This number is significantly higher than that reported
in [7] for the busiest commercial site, which experienced a maximum request
rate of 25 per second. We modeled our request patterns to mimic the normal
Pareto distribution seen in website traffic logs, i.e., the majority of the requests
(80% to 90%) typically are for only 10% to 20% of the site’s total resources.



Alias /modoai "/var/www/"
<Location /modoai>

SetHandler modoai-handler
modoai_sitemap /var/www/sitemap.xml
modoai_admin smith
modoai_email admin@foo.edu
modoai_gateway_email mail@foo.edu
modoai_oai_active ON
modoai_encode_size 10000
modoai_resumption_count 10000
modoai_plugin wc ’/usr/bin/wc %s’ ’/usr/bin/wc -v’ text/*
modoai_plugin file ’/usr/bin/file %s’ ’/usr/bin/file -v’ */*
modoai_plugin md5sum ’/usr/bin/md5sum %s’ ’/usr/bin/md5sum -v’ */*
modoai_plugin jhove "/opt/jhove/jhove -c /opt/jhove/conf/jhove.conf -m jpeg-hul -h xml %s"

"/opt/jhove/jhove -c /opt/jhove/conf/jhove.conf -h xml -v" "image/jpeg"
modoai_plugin pronom_droid "/opt/jdk1.5.0_07/bin/java -jar

/opt/droid/DROID.jar -L%s -S/opt/droid/DROID_SignatureFile_V12.xml"
"/opt/jdk1.5.0_07/bin/java -jar /opt/droid/DROID.jar -V" "*/*"

modoai_plugin exifTool "/usr/bin/exiftool -a -u %s" "/usr/bin/exiftool -ver" "image/jp*"
</Location>

Fig. 2. Portion of the mod oai section of an Apache configuration file

4 Test Data

We ran multiple “baseline” requests to establish the response range of the server
without any CRATE requests active, using JMeter, the Apache web server per-
formance analyzer. The general resource distribution as a portion of overall web
traffic is shown in Table 4. HTML and GIF files formed the core 85% of the
requests, as would be characteristic of normal web traffic distribution. For the
remaining 15%, we used a random-selection factor that is configurable in the
JMeter application, which chooses one of the non-core resources at random from
a list. Because of this random-resource selection, the throughput during each test
varied slightly, from a high of 92.7 requests per second to a low of 80.1 requests
per second. If the random resource was a large video (“wmv” file), the request
rate would drop to the lower value, for example.

Table 2. Average distribution of hits (requests) per test run.

Type Avg Hits Type Avg Hits Type Avg Hits
mp3 312 html 238085 png 24296
jpeg 24316 pdf 3479 doc 717
ppt 1648 svg 456 txt 307
gif 792618 wmv 240
Average Total Hits (per test): 1,086,474

The “Response Time” columns do not show a consistent growth rate from
0% through 100% across all rows. From a performance testing perspective, the
variation is essentially “in the noise.” Differences of a few milliseconds or even



seconds between columns may be due to any number of factors other than load
alone. For example, the server may have been doing swap clean up or flushing
logs. In some ways, having a busier server is more efficient because it is more
likely that a resource which is about to be put through the metadata utility
“wringer” will already be available in cache. However, site crawls - archival and
otherwise - pull the full range of resources from the server, inevitably forcing
some “swap” activity.

Web servers are more likely to be I/O bound than CPU bound, unless the
server is also acting as an application or database server (WebSphere or MySQL,
for example); the throughput reflects this I/O limitation. Even when mod oai
was building a full CRATE using all utilities, the server was able to provide 90%
of the responses to regular web requests within 16 milliseconds. Little impact
was seen to normal request servicing because typically very little CPU time is
needed to serve up a web page. I/O-bound and CPU-bound services can co-exist
without serious collision. Web servers will often have many “spare” CPU cycles
that can be utilized by the metadata utilities without disrupting the I/O process
of serving up web pages. In other words, even if a metadata utility is demanding
a lot of CPU time, the web server can continue to deliver resources at a rapid
rate to other users since it is not waiting for the CPU to be free, but is instead
dependent on I/O availability.

5 Findings & Discussion

The test results in Table 5 show that even a modest web server can provide
CRATE-type output without significantly impacting responsiveness. Table 5
compares the performance of the server in building the CRATE response when
the various utilities are turned on or off. The fastest are the “native” utilities
such as File and the Hashes. All of these have been in wide use and heavily op-
timized over the years, so this result is to be expected. Two of the Java utilities
also performed well, despite not being server-based programs (JVM startup adds
significant overhead to such a utility). Utilities are essentially additive, with pro-
cessing time and file size growing in proportion to the number of utilities called.

Performance under most utilities was acceptably fast. The CPU power of our
test web server is not particularly remarkable, but it never bogged down during
the tests, except during Pronom-Droid activity. Droid increased the harvest time
over 1,000%, and frequently drew 100% of CPU. We attempted to compile the
utility, and briefly looked at its source code to see if we could spot some obvious
problem (we didn’t). We also ran the utility in several other environments and
found it to be similarly time-consuming on other systems. Droid does not appear
to make external calls; at least no traffic went out of the server to any other site
during its operation. At this point, we are unable to explain this phenomenon.

To return to the questions we posed in Section 3, our data indicates that
it is safe to generate the metadata on the web server. We recommend that
the configuration be tested before deployment, since a utility might have overly



Table 3. Web server performance for full crawl using a standard crawler (wget)
versus OAI-PMH. ListIdentifiers returns only a list of resources (i.e., a kind of
sitemap), not the resources themselves; ListRecords returns the resources and
metadata.

Response Time in Min:Sec Response
Request Active By Server Load Size
Parameters Utilities 0 % 50 % 100% (Bytes)
wget (full crawl) None 00:27.16s 00:28.55s 00:28.89s 77,982,064
ListIdentifiers:oai dc None 00:00.14s 00:00.46s 00:00.20s 130,357
ListRecords:oai dc None 00:00.34s 00:00.37s 00:00.37s 756,555
ListRecords:oai crate None 00:02.47s 00:08.34s 00:03.38s 106,148,676
ListRecords:oai crate File 00:09.56s 00:09.72s 00:09.50s 106,429,668
ListRecords:oai crate MD5 00:04.55s 00:04.52s 00:04.40s 106,278,907
ListRecords:oai crate SHA 00:19.36s 00:19.70s 00:19.96s 106,190,722
ListRecords:oai crate SHA-1 00:04.57s 00:04.49s 00:05.37s 106,316,236
ListRecords:oai crate WC 00:06.14s 00:06.11s 00:05.92s 106,419,750
ListRecords:oai crate Exif 00:04.60s 00:04.79s 00:04.51s 106,163,645
ListRecords:oai crate DC 00:31.13s 00:29.47s 00:28.66s 106,612,082
ListRecords:oai crate OTS 00:35.81s 00:36.43s 00:35.83s 106,285,422
ListRecords:oai crate MetaX 01:13.71s 01:15.99s 01:13.96s 106,257,162
ListRecords:oai crate Jhove 00:54.74s 00:54.99s 00:54.84s 106,297,738
ListRecords:oai crate Droid 44:14.01s 45:29.76s 47:23.29s 106,649,382
ListRecords:oai crate All but Droid 03:34.58s 03:38.84s 03:42.60s 107,906,032
ListRecords:oai crate All 47:42.45s 48:53.97s 50:09.76s 108,407,266

high CPU demand. We would not recommend using utilities that dramatically
increase the total harvest time when compared with the time of a simple harvest.
Webmasters should configure and test the response time for each utility and
monitor system performance to ee if problems occur, just as they do for other
aspects of the web server.

Is it safe to ask for the metadata? A full CRATE harvest of a site produces a
large response. The final size of the CRATE , 108 MB, was nearly 50% larger than
the site itself. Utilities which produce more descriptive output than those used in
our tests would obviously produce a larger result (and take longer to build). The
harvest method used in our experiment is termed “By Value” because it retrieves
the resources and the metadata. As such, it represents a worst-case approach.
An alternative approach is to harvest the information “By Reference” which
returns only the URI to the resource, not the Base64 encoding of the resource;
the preservation metadata is still included by value in the CRATE. The resulting
file, using our example test website, will be only about 8 MB instead of 108 MB.
The harvester can combine this response with the results of a standard crawl,
which may be a more efficient solution for both sides.



6 Conclusion & Future Work

It appears safe to both generate such metadata and to ask the web server for it,
within certain parameters. We tried several types of plugins with mod oai: Jhove,
Metadata-Extractor, Open Text Summarizer, Hashes, and others. Anything that
can run automatically is likely to be compatible, although utility speed and CPU
demands ultimately determine whether a given utility is feasible or not. Scripts
that further customize plugin usage can simplify installation without adding
significant overhead. For example, Jhove has a number of analysis or “HUL”
modules (ASCII, TIFF, JPEG, etc.) targeted to specific file types. Rather than
create a dozen <modoai_plugin> sections, a shell script can pass the filename
and the correct HUL to the utility and yet add near-zero overhead to the process.
The disadvantage is less transparency within the web server’s configuration file
where the utility/shell script is called.

There are two points we would like to emphasize. First, the CRATE process
is fully automated – the metadata is not validated by the web server nor by
any other administrative action. Second, the metadata is generated at time of
dissemination; it is not pre-processed nor canned. The metadata thus reflects
the best-information available at that point in time. This approach harnesses the
web server itself to support preservation, moving the burden from a single web-
wide preservation master to individual web servers, where detailed information
about the resource is most likely to reside. It also moves preservation metadata
from strict validation at ingest to best-effort description at dissemination. In
other words, the web server acts as its own agent of preservation by providing
the crawler with sufficient information to assist the preservation process at the
time the site is crawled.

Several of the non-native utilities are Open Source, and we believe it would
be worthwhile to experiment with modifications to these utilities to see if per-
formance of can be improved. This can sometimes be achieved by using more
efficient libraries, for example. Other utilities have some awkward usage require-
ments which could be tweaked for used with mod oai. Pronom-Droid, for in-
stance, does not allow a space to appear between the “-L” and the filename
being called. This forced us to use a shell script to pass the variables to that
utility. The penalty for this approach is effectively invisible: Doing the same
“shell” method with Jhove introduced no change in utility completion time.
Still, it is an annoyance and makes the Apache configuration file less immedi-
ately interpretable, because the shell script has to be consulted to see what is
being called and how it is being used.

Java-based utilities seem to be at a disadvantage in general, because the
natural optimization of the JVM does not occur in this type of situation. Com-
piling such utilities could help. We tried compiling Jhove (after the tests reported
above) and found that it ran significantly faster. Droid, however, proved resis-
tant to compilation, having numerous dependencies we could not readily resolve.
We would be interested in how much improvement could be gained by compiling
Java-based utilities, and suggest that developers consider providing an alter-
native distribution package containing all necessary dependencies. We are also



interested in whether a rule of thumb could be devised to guide webmasters in
selecting or configuring metadata utilities, and if such utility performance tun-
ing would produce enough improvement to warrant the effort. Finally, websites
vary greatly in size, type of content, and hardware configuration. A large-scale
series of tests across many different websites would provide useful data regarding
parameters for integrating preservation metadata utilities into the web server.

7 Acknowledgements

This research has been supported in part by the Library of Congress. We would
also like to thank Kronos Corporation (Jim Grey) and Owenworks, Inc. (John
Owen) for providing a commercial test bed and a load-testing framework.

References

[1] Nelson, M.L., Smith, J.A., Van de Sompel, H., Liu, X., Garcia del Campo, I.:
Efficient, automatic web resource harvesting. In: 7th ACM WIDM. (November
2006) 43–50

[2] Smith, J.A., Nelson, M.L.: CRATE: A simple model for self-describing web re-
sources. In: IWAW’07. (June 2007)

[3] Lyman, P., Varian, H.R., Charles, P., Good, N., Jordan, L.L., Pal, J.: How
much information? 2003. Research Project Report, U.C. Berkeley School of Infor-
mation Management and Systems (October 2003) http://www2.sims.berkeley.
edu/research/projects/how-much-info-2003/.

[4] Baeza-Yates, R., Castillo, C., Efthimiadis, E.N.: Characterization of national web
domains. ACM TOIT. 7(2) (2007)

[5] Levering, R., Cutler, M.: The portrait of a common html web page. In: DocEng
’06. (2006) 198–204

[6] Fetterly, D., Manasse, M., Najork, M., Wiener, J.L.: A large-scale study of the
evolution of web pages. Software: Practice & Experience 34(2) (2004) 213–237

[7] Bent, L., Rabinovich, M., Voelker, G.M., Xiao, Z.: Characterization of a large web
site population with implications for content delivery. In: WWW’04 (December
2004) 522–533

[8] Ntoulas, A., Cho, J., Olston, C.: What’s new on the web?: the evolution of the
web from a search engine perspective. In: WWW ’04 (2004) 1–12

[9] Cherkasova, L., Karlsson, M.: Dynamics and evolution of web sites: Analysis,
metrics, and design issues. In: ISCC, IEEE Computer Society (2001) 64–71

[10] Cho, J., Garcia-Molina, H., Page, L.: Efficient crawling through url ordering.
Computer Networks and ISDN Systems 30(1-7) (1998) 161–172

[11] Van de Sompel, H., Nelson, M.L., Lagoze, C., Warner, S.: Resource harvesting
within the OAI-PMH framework. D-Lib Magazine 10(12) (December 2004)

[12] Bekaert, J., De Kooning, E., Van de Sompel, H.: Representing digital assets using
MPEG-21 Digital Item Declaration. IJDL 6(2) (2006) 159–173

[13] Scott, M.: Wordsmith software package. Oxford University Press (2008) http:

//www.lexically.net/wordsmith/.
[14] Hardy, D.R., Schwartz, M.F.: Customized information extraction as a basis for

resource discovery. ACM Trans. Comput. Syst. 14(2) (1996) 171–199
[15] Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: Kea:

practical automatic keyphrase extraction. In: DL ’99 (1999) 254–255


