
CloudCAP: A Case Study in Capacity Planning
Using the Cloud

Joan A. Smith1, John F. Owen1, and James R. Gray2

1 Emory University Atlanta, Georgia USA
2 Kronos, Inc. Chelmsford, Massachusetts USA

Abstract. Emory University Library teamed with a commercial firm to
develop a prototype system for using Amazon’s EC2 to properly size web
application server deployment environments. This approach has been
successfully applied to both high-transaction commercial environments
with hundreds of thousands of users and to lower transaction digital
library environments with hundreds of users. Starting with the same
EC2-based product, our goal was to assess whether a similar strategy
is practical for an academic library as well as for commercial systems.
We examined cloud configuration and deployment costs, test preparation
and analysis, and overall feasibility of this approach. Typically, for digital
libraries, the user levels are significantly lower, the deployment costs are
lower, and the return on investment (ROI) is not as immediately obvious.
We conclude that the effort is worth the investment only (a) when there
are significant repercussions from under-sizing a newly deployed digital
library and (b) sufficient engineering staff are on hand to develop and
debug the deployment scenarios.

1 Background

Emory University Library operates over 150 scholarly websites on a dozen small
servers ranging from dual-core to quad-core hardware, with average daily visitor
(non-robot) numbers in the low to mid-100’s according to our Google Analytics
reports. Except for rare internet outages and occasional scheduled maintenance,
the sites are available and responsive 365x24x7. Using inexpensive, off-the-shelf
hardware running a typical “LAMP stack” (Linux, Apache, MySQL and Perl,
Python, or PHP), our servers easily handle the low-volume visitor rates typical
of academic sites. Our capacity planning has therefore primarily focused on
consolidation of services to reduce total hardware investment and administrative
overhead for an ever-growing number of sites.

The situation changed dramatically with the launch of the Transatlantic
Slave Voyages website3 (in 2008 and again in 2009), and the new African-Origins
website4 (in 2011). Highly-popular, these digital scholarship sites are actually
web applications, more complex than the digital library webs we typically host.

3 http : //slavevoyages.org
4 http : //african− origins.org



News coverage by agencies like the New York Times ramp up site visitor counts
by several orders of magnitude: from hundreds per day to tens of thousands per
day. Pre-publicity beta deployment proved that our existing approach would lead
to embarrassing server failure and site crash. With limited funds, few hardware
resources, and a shortage of engineers, we needed to accurately plan for capacity
and responsive site performance.

Sophisticated tools to properly size deployment environments have been de-
veloped by academic and commercial researchers to ensure satisfactory perfor-
mance and sufficient capacity of the institutional infrastructure [2],[3]. But using
these planning tools is problematic for a small operation like Emory Libraries,
in part because we lack the on-site availability of a variety of hardware with
which to test candidate configurations. Even where license costs are not pro-
hibitive, effective operation of these tools requires a significant investment in
user-training and deployment time, which has so far not been practical for our
small engineering team.

A 2009 UC Berkeley report highlighted the Cloud’s “elasticity of resources”
which allow businesses to meet variability in performance needs without investing
in high-cost hardware [1]. However, Cloud-base deployments may be prohibited
(e.g., government) or simply unaffordable for 24x7 operations (e.g., Emory Uni-
versity Library). In this case, the Cloud can be used to test potential physical
configurations before hardware is purchased and the system deployed.

We spent several years in the commercial sector using the Cloud to size
infrastructure for non-Cloud deployments and to identify and eliminate bottle-
necks in the application environment. Our strategy, CloudCAP, was based on
Amazon’s EC2 because of its broad configuration options for computing hard-
ware and operating systems, its ready availability, and Amazon’s inexpensive
operational fees. From 2008 through 2011 we applied the CloudCAP approach
to Emory web applications that had abnormally high visitor rates, i.e., tens of
thousands per day instead of just hundreds. This paper discusses our findings.

2 Designing CloudCAP

CloudCAP has a very specific role to play when it comes to capacity planning
and performance testing: Provide the most rapid turnaround time possible for
evaluating a proposed feature in the environment. Just as improving the edit-
compile-debug time improves programmer productivity, reducing the time re-
quired to configure, deploy, test and evaluate a system improves product quality
through increased tester productivity. Where previously a few basic load tests
might be completed, CloudCAP allows more testing to occur, driving the solu-
tion towards a configuration that is both economical and responsive. CloudCAP
extends the Infrastructure as a Service (IaaS) model to create a Testing as a Ser-
vice (TaaS) model. It is a web-based application that interfaces with Amazon’s
storage (S3) and compute Clouds (EC2) to enable testers to rapidly deploy and
configure both the application under test (AUT) and the test environment.



2.1 Cloud Definition

The term “Cloud” has been used to describe a wide variety of services ranging
from mainframe computing centers to monthly subscription-based services. From
our perspective, the Cloud has very specific characteristics. (1) It is sold on
demand, not by subscription. (2) It is elastic, i.e., a user can purchase as little
or as much as is needed at that time. (3) The hardware is managed by the
provider, and (4) it is characterized by rapid provisioning and deployment of
systems, near real-time for some Cloud services. These features are what make
the Cloud attractive as a platform for capacity planning and performance testing.

2.2 CloudCAP Architecture

CloudCAP has three responsibilities. First, it facilitates rapid application deploy-
ment of both the AUT and the test agents. All software components required
for both AUT and testing are preinstalled in the operating systems images we
create for use by the solution. The image contains preinstalled copies of all soft-
ware required by any of the nodes, such as database engine, application server,
web server, etc, allowing us to maintain a single Amazon Machine Image (AMI)
per operation system, independent of the type of node the image will become.
All node types launch from the same image. The second responsibility is config-
uration of the nodes in the cluster. This configuration cannot happen until the
nodes have been booted and are connected to the network. To avoid excessive
polling, this configuration control is inverted, with each node asking CloudCAP
for configuration data at two distinct stages in its boot process. The node’s
configuration scripts are hooked into the rc.local script on Unix style operating
systems, and in the startup group policy on Windows operating systems. Finally,
the tool is responsible for monitoring and aggregating performance data from
the cluster.

Figure 2 gives an overview of the process from the perspective of a sequence
diagram. The entire sequence takes only minutes to complete, whereas deploy-
ing physical hardware with a new configuration takes us several hours or longer.
Stage-1 configuration has the nodes requesting from CloudCAP the node’s spe-
cific configuration data. Once all nodes report to CloudCAP that Stage-1 con-
figuration is complete, Stage-2 begins. Nodes learn the IP addresses of their
peers enabling an application server to initialize a connection pool back to the
database.

Consider a two machine cluster with a MySQL database server and a Java
Servlet container, both on Windows 2003 Server. CloudCAP would first instruct
EC2 to launch two copies of CloudCAP’s custom Windows 2003 Server image.
Once the first machine boots, its Startup Group Policy instructs it to connect
to CloudCAP, and retrieve its Stage-1 instructions. The node starts configuring
MySQL, and loading any customer specific data it needs. Similarly, the second
node can start configuring Apache Tomcat, but it cannot actually launch it
until Stage-2, when it has the address of the database connection. Once finished
with Stage-1 processing, both nodes begin polling CloudCAP for peer data.



CloudCAP	  
Web	  Interface	  

to	  
Amazon	  EC2	  

Amazon	  EC2	  

Virtual	  
Machine(s)	  Virtual	  
Machine(s)	  Virtual	  
Machine(s)	  Virtual	  
Machine(s)	  Virtual	  
Machine(s)	  

1 2a 

2b 

3 

Fig. 1. CloudCAP is a front-end for Amazon’s EC-2 service. A single tester can con-
figure & instantiate a variety of tests from a single CloudCAP instance. Step (1) User
initiates CloudCAP via the web interface. Step (2a) EC2 launches the virtual machines
configured by the user’s selection of options (2b). In Step (3) the user monitors the
machines and gathers data from the performance tests.

Once peer data is provided, cluster configuration concludes with the second
node configuring the database connection pool and starting Apache Tomcat.

App NodeDB Node CloudCAPEC2

run instances
boot

boot

get node cfg

get node cfg
publish
cluster
topology

*get cluster cfg
*get cluster cfg

Fig. 2. Abbreviated sequence diagram of CloudCAP instantiation & operation.

2.3 Using CloudCAP

CloudCAP can be used for both performance and functional testing. It also
serves to prove the deployability of the packaged software: If it does not install



properly or components are missing, this fact is immediately discovered during
CloudCAP initialization. See Figure 3 for a screen shot of the simple initialization
interface. The effort of writing the test scripts is the same in both traditional
and cloud-based testing. However, with CloudCAP an additional up front effort
is required to script the deployment of the AUT into the CloudCAP framework.
The primary benefit of CloudCAP is that once the deployment has been scripted,
the full range of tests can be conducted by a single test engineer, and the updates
and retests can be accomplished in a matter of minutes or hours instead of days
or weeks. For the Library, with a project queue far longer than its staff capacity,
thorough product testing is highly resource constrained. Off-loading the test
setup, operation, and results reporting to a one-button system like CloudCAP
has helped us prepare more complex sites for successful launch.

Fig. 3. Part of the CloudCAP web interface to configuration options. Product release
list comes from the software’s version control repository.

2.4 Case Study

The Africans-Origins website launch was planned to include major news media
coverage, meaning the site would experience abnormally high traffic volume,
estimated at 12,000 to 20,000 users per day based on our previous experience
with the Transatlantic Slave Voyages website. We use page response time and
page throughput as key metrics to measure performance since this has proven
a reliable indicator of our corporate and government customers’ satisfaction.



The page response times are measured in seconds per page, and throughput in
pages per second. For African-Origins, our target performance level was a page
response of no more than 0.5 seconds per page and a throughput of ≥ 20 pages
per second at peak unique visitor levels. We used CloudCAP both to estimate the
capacity of our best in-house server and to identify the minimum configuration
that would meet our performance goals.

The Library is not equipped with the infrastructure to perform compara-
tive hardware stress-tests, so we relied on CloudCAP to identify performance
bottlenecks and recommend server configurations. The key to the evaluation
was CloudCAP’s ability to quickly configure machine images and clusters with
the target environment, and the ability to rapidly deploy, and re-deploy, the
African-Origins site into the test environment so as to support quick assessment
of environment and application changes. Using CloudCAP, machine images and
a single cluster were configured to support the application environment and the
test agent environment. Test agent scripts were created that simulated unique
visitor access, and emphasis was placed on the sections of the application that
were expected to be areas of high-traffic. Initial testing was conducted to evalu-
ate the proper configuration of the test environment and the deployment of the
African-Origins application within the environment. After verifying that Cloud-
CAP was properly configuring the test environment, an initial performance test
was run for the purpose of establishing a baseline set of metrics.

The initial test run revealed that the application server CPU utilization was
nearly 100% and that system saturation occurred at a level of only 30 unique
visitors, far below acceptable limits. Further tests indicated that the Levenshtein
search process was the primary bottleneck. A refactoring of the search implemen-
tation to improve its efficiency increased site performance to acceptable levels.
Additional tests revealed a potential saturation point with respect to database
access and ongoing refinements to the application were made to minimize its
impact on system performance. We continued to conduct “what-if” analysis on
the site, adjusting allocated resources (CPU, RAM, etc.) until we reached an
optimal configuration. Each “what-if” session took only minutes of the tester’s
time, whereas performing those same hardware adjustments and redeployments
on systems in our labs would have taken many hours per configuration change.

3 Results

We found a number of positive results arising from CloudCAP. It allows for
what-if scenarios in both topology and in tuning parameters including specific
details like RAM allocations, and number of CPUs. Options can be configured
to meet domain-specific needs, allowing for more flexible scenario testing. Cloud-
CAP supports not only a LAMP stack but also Java Enterprise stacks (Tomcat,
Oracle, Apache), and Windows environments (Server 2008, IIS, SQL Server).
Cloud-based capacity planning and assessment provides a cost-effective means
to:



– Quickly configure varying combinations of hardware and operating systems
that simulate the production environment

– Quickly deploy load-test agents that can simulate varying levels and types
of customer usage patterns

– Quickly conduct “what-if” analysis to determine if variances in system con-
figuration can improve overall application performance.

Once the test environment has been configured, robust testing of the product
can be conducted with minimal support from QA staff, resulting in a faster
turn-around time between testers and developers and culminating in an im-
proved end-product. The on-demand nature of the Cloud is a perfect match for
the bursty nature of load testing and for overall capacity planning whether the
eventual deployment will be local or in the Cloud itself. On the other hand, using
CloudCAP requires a substantial engineering investment by the institution. In
part this is because the API for integrating tests into the CloudCAP framework
is still immature, and configuring CloudCAP to test a new product may outweigh
relative benefits. In a commercial environment, the benefit accrues over a span of
several product releases, encompassing the entire lifecycle of the product. In the
library environment, a product may have only a single release. New sites often
see a very heavy load during the initial deployment which then subsides into
the more typical low-level page hits, so the institution might find it cheaper to
simply “throw hardware at the problem.” After the initial surge completes, en-
gineering focus shifts to consolidation onto a shared service environment, where
many applications co-exist on common hardware. CloudCAP can be used to val-
idate that the hardware configuration of the shared environment has sufficient
capacity to support consolidation.

One challenge is mapping the EC2 hardware to equipment that can be pur-
chased from commercial vendors. Amazon characterizes compute power in terms
of a synthetic benchmark, compute units. Amazon defines one EC2 Compute
Unit as providing the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron
or 2007 Xeon processor.5 However, because there is no standard benchmark to
evaluate more modern equipment in terms of compute units, translating an EC2
environment into practical hardware is largely guess work.

The next difficulty centers around the variability in hardware provided by
Amazon. While in theory a test might be running on a 12-compute-unit box,
other virtual machine tenants on the same physical hardware might coinciden-
tally also be compute-intensive. Although Amazon attempts to virtualize equally,
they have no predefined knowledge of the usage scenarios of the many tenants
they colocate on the same physical hardware. In our experience, multiple test
runs are necessary to even-out the random effects of colocation with other ten-
ants.

5 Cf. Amazon’s description at http://aws.amazon.com/ec2/instance-types/.



4 Future Work

The Cloud-based testing approach has proven invaluable for integrating load
testing into the workflow, but its use has highlighted some shortcomings. A high
initial investment is required for each new application introduced into the Cloud-
CAP environment. The application plugs into the CloudCAP service through a
still evolving API. This API needs to be matured so that it provides a flexible
and stable interface by which an application can specify its full installation pro-
cess and implement its own configuration into the clustered environment. Even
though some standardization of application installations exist such as the Java
WAR and EAR specifications, many of the details of deploying applications in
a clustered environment remain painfully manual.

Performance monitoring is an important aspect of any load testing effort. In
the CloudCAP environment it is still very ad-hoc, and is based on Amazon’s
Cloud Watch monitoring tool and a collection of operating system specific tools
(Windows Performance Monitor, top, ps etc). An ideal system would aggregate
tools from the Cloud provider together with operating system tools running on
the individual nodes similar to the Ganglia tool.6 Such an aggregation would
allow rapid assessment of performance, further reducing the total testing time
of a particular permutation.

A considerable amount of work still needs to be done before CloudCAP can
be released as an Open Source product. In part the problem is one of practi-
cality, since each institution’s environment needs to be customized within the
CloudCAP framework. In other words, there is not as much general reusability
as we had hoped. Nonetheless, the Cloud-based testing approach shows promise
for organizations with strong in-house engineering expertise and the need to
support a wide range of performance requirements or deployment environments.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A
Berkeley view of cloud computing. Tech. Rep. UCB/EECS-2009-28, University of
California at Berkeley (February 2009)

2. Bagchi, S., Hung, E., Iyengar, A., Vogl, N., Wadia, N.: Capacity planning tools for
web and grid environments. In: Proceedings of the 1st International Conference on
Performance Evaluation Methodolgies and Tools. ACM (2006)

3. Smit, M., Nisbet, A., Stroulia, E., Edgar, A., Iszlai, G., Litoiu, M.: Capacity
planning for service-oriented architectures. In: Proceedings of the 2008 Conference
of the Center for Advanced Studies on Collaborative Research: Meeting of Minds.
pp. 11:144–11:156. ACM (2008)

6 http : //ganglia.info


