Cloud Based Testing & Capacity Planning (CloudPerf)

Joan A. Smith
Emory University Libraries
joan.smith@emory.edu

Frank Owen
Owenworks Inc.
frank@owenworks.biz

Full presentation materials and CloudPerf screencast are available at http://www.joanasmith.com/content/cloudperf

Discussion Map

- 1. Cloud Strategies
- 2. Performance Testing
- 3. Challenges & Lessons Learned
- 4. Q & A

PART 1. CLOUD STRATEGIES

Motivation

- Once upon a time...
 - Grad-student implementation
 - Significant university digital scholarship website
 - Major PR event with NY Times, TV News, etc.
- Fairy tale to nightmare...
 - Fastest hardware on site was still inadequate
 - Max concurrent users < 15</p>
 - Expected concurrent users: > 15,000
- Wake up, Neo...

Background

Goals:

- Deploy as economically as possible (don't overbuy hardware)
- Tune application for performance before deployment (happy users)

Traditional Approach Limitations:

- Availability and cost of hardware (affordability as decision point)
- Time in days or weeks to configure, test, reconfigure (rinse and repeat)
- Blind investment in hardware solutions (fingers crossed)
- High up-front costs and on-going costs (for test, admin, etc.)

Cloud advantages

- Quick to deploy, evaluate, adjust and redeploy
- Rented cost of hardware is cheap
- Easily tweak specific aspects of hardware and OS configurations

Cloud disadvantages

- High initial costs to create the standardized test environment
- Not guaranteed hardware performance (can vary within type)
- Only approximating target deployment environment

Definition: Cloud Service

- This is what we mean by cloud
 - Sold on demand (not a subscription)
 - Elastic (as much or as little at one time)
 - Hardware is managed by the provider
 - Rapid provisioning/deployment (near real-time for some)
- This is not a cloud
 - Monthly fee + access costs
 - Mainframe data center
 - Long deployment cycle

Types of clouds

- Software as a Service (SaaS)
 - Users log in to turnkey web application
 - Examples:
 - salesforce.com Customer Relationship Management / Sales
 - freshbooks.com Small business invoicing
 - soasta.com Cloud based load testing
 - Google Docs Document management
- Platform as a Service (PaaS)
 - Specific set of APIs for that one platform
 - Build custom application on top of APIs
 - Deploy apps to that platform
 - Example: Google App engine
 - Custom Java, Python APIs: Write your own everything
 - Auto-scales in cases of increased user demand
- Infrastructure as a Service (laaS)
 - Configurable OS, Hardware
 - Example: Amazon
 - Amazon EC2 Compute cloud ← CloudPerf uses EC2
 - Amazon S3 Storage cloud

EC2: What it is & How it works

- EC2 = Elastic Compute Cloud
 - A virtual infrastructure
- Instance Based
 - Amazon Machine Image: Hard Drive image of an OS stored in Amazon Cloud (S3 or EBS)
 - Instance Type: Selectable Hardware
- Costing
 - Cost begins upon powering up
 - Instance Price per Hour: \$0.02-\$2.48
 - Additional \$\$ for network, storage usage
- Management
 - Web interface for administration
 - Programming APIs

Launching a Virtual Instance

Typical large app cluster

EC2 Manual Cluster Building

One time AMI Setup:

- Launch public EC2 image through Amazon Console
- Install infrastructure software to the image
 - Oracle Database, Tomcat App Server, Apache HTTPD etc
- Customize configuration files
- Save your AMI as private AMI

Recurring Setup:

- Launch n (10) AMIs, record network info
- Reconfigure 4 app servers to talk to db
- Reconfigure 1 load balancer to talk to apps
- Reconfigure 4 test runners to talk to each other, load balancer
- Fetch, install and configure latest software version (e.g., slave voyages)

Automate!

CloudPerf: Streamlined workflow

- New web-based management system
- Aims to minimize number of Machine Images we need to maintain
 - One windows image, One Linux image
 - All software installed on all images
 - Utilizes 16 KB User Data to instruct image what service to start
- Auto configures entire cluster for target web application
 - Peer discovery
 - Synchronization
 - Downloads and installs target software from repository

CloudPerf Cluster Configuration

CloudPerf Monitoring

Technical Challenges

- Software repository to fetch latest version
 - Your software changes: don't rebuild AMI every time
 - Amazon S3 works well as image storage
- Peer discovery and network configuration
 - Changes every launch: cannot be part of AMI
 - Private IPs protect your app during testing
- Synchronization
 - DB, then App Servers, then Load Balancer
 - Requires polling solution
- Instance types are approximate
- Infrastructure failures (network, heavy load etc)

Resolving startup dependencies

- We modeled startup after the Unix rc model
 - Runlevel 0: No dependencies
 - Runlevel 1: User-data is posted
 - Runlevel 2: All peer network addresses are known
- Timing is everything
 - Peer discovery is a synchronization problem

How does Amazon charge?

- Instances
 - \$0.02 to \$2.48 per hour,
 based on processing power and memory
- Network Data Transfer
 - Inbound: \$0.10 per GB
 - Outbound:
 - First GB Free
 - \$0.08 to \$0.15 per GB thereafter
- CloudWatch
 - \$0.015 per instance-hour

- EBS Storage
 - \$0.10 per GB/month
 - \$0.10 per million I/O requests
- S3 Storage
 - \$0.14 per GB for first 1 TB, less thereafter
 - Data In: \$0.10 per GB
 - Very small per request charges
- Prices vary by Data Center
 - East Coast, Europe, West Coast, etc.

Amazon Instance Types

Туре	Memory	CPU CU	Disk GB	Linux	Windows	Note
t1.micro	613 MB	2		\$0.02	\$0.03	750 hrs Free
m1.small	1.7 GB	1	160	\$0.085	\$0.12	32 bit only
m1.large	7.5 GB	4	850	\$0.34	\$0.48	
m1.xlarge	15 GB	8	1690	\$0.68	\$0.96	
m2.2xlarge	34 GB	13	850	\$1.00	\$1.24	
m2.4xlarge	68 GB	26	1690	\$2.00	\$2.48	
c1.medium	1.7 GB	5	350	\$0.17	\$0.29	32 bit only
c1.xlarge	7 GB	20	1690	\$0.68	\$1.16	
cc1.4xlarge	23 GB	33.5	1690	\$1.60	N/A	Cluster Compute
cg1.4xlarge	22 GB	33.5	1690	\$2.10	N/A	Dual GPUs

1 CU = One 2007 1.0-1.2 GHz Opteron or Xeon processor

1 CU = One 2006 1.7 GHz Xeon processor

Cost examples

- 1 full time performance tester at Owenworks
 - Mostly large 11-node clusters
 - Total bill for AWS: ~\$1500/month
- One 2 node Linux cluster, 4 hours/day
 - m1.xlarge 15 GB RAM, 8CU -> \$120 month

QA Costs for Cloud vs Traditional

- In a 'real' QA lab, it would take two knowledgeable individuals an entire work-week to load and configure 11 servers for a single test run
- With EC2, an entire cluster can be launched by an individual and be ready for testing in about 5 minutes.
- When the test is complete and the data gathered, the cluster can be terminated; if additional runs are needed, another cluster can be ready in minutes
- Multiple clusters can easily be configured to allow direct comparisons between software releases (valuable for troubleshooting)
- Using the cloud, the costs of purchasing and maintaining traditional QA lab equipment can be substantially reduced if not eliminated

PART 2: PERFORMANCE TESTING

Key Performance Testing Tasks

- Identify bounds
 - CPU? Disk I/O? RAM? Net Bandwidth?
 - Clarifies what to buy for deployment
- Identify hardware requirements
 - capacity planning
 - Which/how many CPUs
 - Optimum RAM, Disk, etc.
- Identify software bottlenecks
 - Many software defects only show up under load
 - Database concurrency, threading, cache sizes
- Identify failure modes
 - When the application is overloaded, how does it fail
 - Target responses for failure modes

Types of performance tests:

- Load testing
 - using expected customer workload
- Stress testing
 - exceeding expected load; what happens?
- Endurance testing
 - basically a longer-duration load test
- Capacity planning
 - Hardware needed to meet expected load

Test Planning Strategy

- Create Application Usage Models
 - Determine usage style (bursty, continuous)
 - Estimate expected load, users, transactions, reports, etc.
- Create Hardware Deployment Models
 - Capacity Tests
 - Performance Tests
- Write tests
 - Jmeter, Rational Performance Test, Silk, etc.
 - Validators are very important.
 - Most applications can generate error pages very efficiently
 - "404" is a successful page generated but not a successful outcome

Tools for EC2 Performance Testing

- Jmeter
 - Open source distributed performance test tool
- Amazon AWS management console
 - CloudWatch, if enabled, gives network stats, CPU usage, Memory usage
- ElasticFox Firefox plugin
 - Functionally equivalent to the EC2 portion of AWS management console
- S3Fox Firefox plugin
 - Functionally equivalent to the S3 portion of AWS management console
- Traditional OS-Specific Tools:
 - Unix: top, iostat, ganglia
 - Windows: Task Manager

JMeter Reporting

Amazon Management Console

Amazon CloudWatch: Graph Detail

Part 3

CHALLENGES & LESSONS LEARNED

Challenge: Analyzing Results

- Instance types are *approximate*
 - need multiple runs to even out results
- Mapping test results to real hardware is hard
 - How much CPU is a CU worth?
- EC2 network topology differs from deployment topology
- Disk I/O performance is poor on EC2
 - Few apps these days are disk bound
 - Disk bound apps not a good match for EC2 testing
- Lack of comparable historical data from similar sites

Challenge: Licensing Issues

- Not Mac compatible!!
 - Apple requires Server OS for virtualization
 - Apple license requires Mac Hardware
 - None of the cloud services use Mac Hardware
- Check the license
 - Some disallow running in virtualized environment
 - Some require separate license
 - Some provide an Amazon AMI, and charge for it by the hour (Windows OS)

Lessons Learned

- Keeping images in sync with scripts is key
 - Use scripts to modify images at runtime
- Minimize the number of images
 - Install all infrastructure software on every image
 - Pull target software versions from S3
 - Startup and configure based on user-data
- Results analysis requires skill & experience
- User models and historical usage data are important
- Separate software process problems from cloud problems
 - Automated testing can serve as a form of regression test

Final Thoughts: Cloud Value

- High up-front costs to script
 - Worthwhile if your apps share a common tech stack
 - Offset by not having to buy boat loads of hardware
- Value from:
 - Repeatability & rapid test turn-around
 - Hardware savings & reduced configuration time
 - Variety of hardware, allowing what-if scenarios
- Performance assurance
 - Right-sizing configuration
 - Right-sizing hardware

PART 4. Q & A

Full presentation materials and CloudPerf screencast are available at http://www.joanasmith.com/content/cloudperf

THANK YOU!

ADDITIONAL DETAIL SLIDES

Cloud as Test Environment

- Broad QA applicability
 - functional testing
 - regression testing
- Test plans vary by test type
 - but using the cloud provides the same sort of benefits
- Efficient, cost-effective, fast results

Cloudy?

- Term originates from network diagrams
 - "Cloud" didn't matter
- Fuzzy concept
 - Overused by marketers
 - Calling it a cloud doesn't make it a cloud
 - "Maximize buzzword synergy"

add pictures of (old) network clouds

CloudPerf Sequence Diagram

39

ElasticFox

